115 research outputs found

    Compensation in epitaxial cubic SiC films

    Get PDF
    Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC

    Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 C

    Get PDF
    The adhesion, friction, and wear behavior of silicon nitride films deposited by low- and high-frequency plasmas (30 kHz and 13.56 MHz) at various temperatures to 700 C in vacuum were examined. The results of the investigation indicated that the Si/N ratios were much greater for the films deposited at 13.56 MHz than for those deposited at 30 kHz. Amorphous silicon was present in both low- and high-frequency plasma-deposited silicon nitride films. However, more amorphous silicon occurred in the films deposited at 13.56 MHz than in those deposited at 30 kHz. Temperature significantly influenced adhesion, friction, and wear of the silicon nitride films. Wear occurred in the contact area at high temperature. The wear correlated with the increase in adhesion and friction for the low- and high-frequency plasma-deposited films above 600 and 500 C, respectively. The low- and high-frequency plasma-deposited thin silicon nitride films exhibited a capability for lubrication (low adhesion and friction) in vacuum at temperatures to 500 and 400 C, respectively

    Ellipsometric study of InGaAs MODFET material

    Get PDF
    In(x)Ga(1-x)As based MODFET (modulation doped field effect transistor) material was grown by molecular beam epitaxy on semi-insulating InP substrates. Several structures were made, including lattice matched and strained layer InGaAs. All structures also included several layers of In(0.52)Al(0.48)As. Variable angle spectroscopic ellipsometry was used to characterize the structures. The experimental data, together with the calibration function for the constituent materials, were analyzed to yield the thickness of all the layers of the MODFET structure. Results of the ellipsometrically determined thicknesses compare very well with the reflection high energy electron diffraction in situ thickness measurements

    Characteristics of III-V Semiconductor Devices at High Temperature

    Get PDF
    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V

    Dielectric function of InGaAs in the visible

    Get PDF
    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data

    An x-band peeled HEMT amplifier

    Get PDF
    A discrete peeled high electron mobility transistor (HEMT) device was integrated into a 10 GHz amplifier. The discrete HEMT device interconnects were made using photo patterned metal, stepping from the 10 mil alumina host substrate onto the 1.3 microns thick peeled GaAs HEMT layer, eliminating the need for bond wires and creating a fully integrated circuit. Testing of devices indicate that the peeled device is not degraded by the peel off step but rather there is an improvement in the quantum well carrier confinement. Circuit testing resulted in a maximum gain of 8.5 dB and a return loss minimum of -12 dB

    Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    Get PDF
    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces

    Study of InGaAs based MODFET structures using variable angle spectroscopic ellipsometry

    Get PDF
    Variable angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs based MODFET structures. Strained and unstrained InGaAs channels were made by MBE on InP substrates and by MOCVD on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth calibration results. The MBE made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice matched concentration

    Cryogenic probe station for use in automated microwave and noise figure measurements

    Get PDF
    A cryogenic measurement system capable of performing on-wafer RF testing of semiconductor devices and circuits has been developed. This 'CryoProbe Station' can wafer-probe devices and circuits at cryogenic temperatures, thus eliminating the need for wire bonds. The system operates under vacuum created by a sorption pump. It uses an open cycle cooling system that can be cooled with either liquid nitrogen or liquid helium. Presently, it can reach temperatures, as low as 80 K and 37 K for each of the coolants, respectively. The temperature can be raised using a heater and it is stabilized to within 0.2 K by use of a temperature controller. The CryoProbe Station features a 1 by 2 inch stage that can hold large circuits and calibration standards simultaneously. The system is used with a Hewlett Packard 8510C Automatic Network Analyzer (ANA) to obtain S-parameter data over the frequency range 0.045-26.5 GHz. S-parameter data on HEMT (high electron mobility transistors) devices has been obtained with this station. With the use of DEEMBED software from NIST, detailed transmission line studies have been performed. Although the CryoProbe Station is designed for frequencies up to 26.5 GHz, useful transmission line data has been obtained for frequencies as high as 40 GHz. The CryoProbe station has also been used with the ATN noise figure measurement system to perform automatic, temperature dependent noise figure measurements

    Mapping transcription mechanisms from multimodal genomic data

    Get PDF
    Background Identification of expression quantitative trait loci (eQTLs) is an emerging area in genomic study. The task requires an integrated analysis of genome-wide single nucleotide polymorphism (SNP) data and gene expression data, raising a new computational challenge due to the tremendous size of data. Results We develop a method to identify eQTLs. The method represents eQTLs as information flux between genetic variants and transcripts. We use information theory to simultaneously interrogate SNP and gene expression data, resulting in a Transcriptional Information Map (TIM) which captures the network of transcriptional information that links genetic variations, gene expression and regulatory mechanisms. These maps are able to identify both cis- and trans- regulating eQTLs. The application on a dataset of leukemia patients identifies eQTLs in the regions of the GART, PCP4, DSCAM, and RIPK4 genes that regulate ADAMTS1, a known leukemia correlate. Conclusions The information theory approach presented in this paper is able to infer the dependence networks between SNPs and transcripts, which in turn can identify cis- and trans-eQTLs. The application of our method to the leukemia study explains how genetic variants and gene expression are linked to leukemia.National Human Genome Research Institute (U.S.) (R01HG003354)National Institute of Allergy and Infectious Diseases (U.S.) (U19 AI067854-05)National Heart, Lung, and Blood Institute (grant T32 HL007427-28)National Institutes of Health (U.S.) (grant K99 LM009826
    corecore